Extensions 1→N→G→Q→1 with N=C2 and Q=C22×S3

Direct product G=N×Q with N=C2 and Q=C22×S3
dρLabelID
S3×C2324S3xC2^348,51


Non-split extensions G=N.Q with N=C2 and Q=C22×S3
extensionφ:Q→Aut NdρLabelID
C2.1(C22×S3) = S3×C2×C4central extension (φ=1)24C2.1(C2^2xS3)48,35
C2.2(C22×S3) = C22×Dic3central extension (φ=1)48C2.2(C2^2xS3)48,42
C2.3(C22×S3) = C2×Dic6central stem extension (φ=1)48C2.3(C2^2xS3)48,34
C2.4(C22×S3) = C2×D12central stem extension (φ=1)24C2.4(C2^2xS3)48,36
C2.5(C22×S3) = C4○D12central stem extension (φ=1)242C2.5(C2^2xS3)48,37
C2.6(C22×S3) = S3×D4central stem extension (φ=1)124+C2.6(C2^2xS3)48,38
C2.7(C22×S3) = D42S3central stem extension (φ=1)244-C2.7(C2^2xS3)48,39
C2.8(C22×S3) = S3×Q8central stem extension (φ=1)244-C2.8(C2^2xS3)48,40
C2.9(C22×S3) = Q83S3central stem extension (φ=1)244+C2.9(C2^2xS3)48,41
C2.10(C22×S3) = C2×C3⋊D4central stem extension (φ=1)24C2.10(C2^2xS3)48,43

׿
×
𝔽